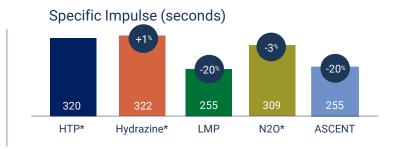
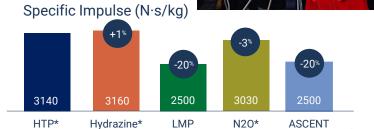
Propellant Comparison


Each propellant has pros and cons in performance, safety, and handling - even those considered "green,"



PERFORMANCE

*bipropellant

	HTP (High-Test Peroxide Bipropellant)	Hydrazine Bipropellant	LMP-103	N2O (Nitrous Oxide Bipropellant)	ASCENT
INTEGRATION & FUELING	Low-Cost No Vapor Pressure Hazard	High-Cost Toxic Vapor Hazard	Moderate-Cost No Vapor Pressure Hazard	Low-Cost High Vapor Pressure Hazard	Moderate-Cost No Vapor Pressure Hazard
DETONABILITY	Non-Detonable Liquid	Non-Detonable Liquid	Non-Detonable Liquid	Detonable Liquid	Non-Detonable Liquid
SUPPLY CHAIN	Easily Sourced	Limited Availability	Limited Availability	Easily Sourced	Limited Availability
STORABILITY	~10 Year On-Orbit Mission Life	Indefinite Mission Life	Indefinite Mission Life	Indefinite Mission Life	Indefinite Mission Life

What is High-Test Peroxide and Why Does Benchmark Use It?

- HTP stands for High Test Peroxide, which is a highly concentrated solution (85-100%) of hydrogen peroxide
- Utilized in satellite propulsion systems since the 1960s
- High specific impulse and density impulse for optimal performance
- Low flame temperatures enable long duration burns
- Low-toxicity simple, cost-effective handling, no harmful byproducts, breaks down into water and oxygen in the environment
- Low vapor pressure no hazard of propellant vapor inhalation or ignitable propellant vapor clouds
- Non-detonable liquid will not mass-detonate due to water hammer, adiabatic compression, friction heating or any other ignition mechanism
- ISRU-friendly can be generated from lunar or Martian water
- Moderate on-orbit storability performance degrades at ~1% per year,
 with path to 0.1% in active development

